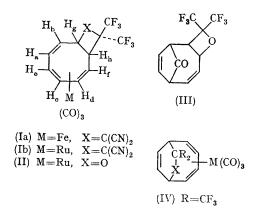
Addition Reactions of Tricarbonylcyclo-octatetraene-iron and -ruthenium

By M. GREEN* and D. C. WOOD

(Department of Inorganic Chemistry, The University, Bristol, 8)

It has been suggested that tricarbonylcyclooctatetraeneiron undergoes 1,4-addition reactions with tetracyanoethylene¹ and substituted acetylenes.2

Tricarbonylcyclo-octatetraeneruthenium³ reacts rapidly at room temperature with hexafluoroacetone and with 1,1-dicyano-2,2-bis(trifluoromethyl) ethylene to afford respectively the crystalline complexes (II) and (Ib), fully characterised by elemental analyses and molecular-weight measurements. Both complexes show terminal carbonyl bands in their infrared spectra characteristic of a disubstituted Ru(CO)₃ group, e.g., (II) shows bands at 2083s, 2019s, and 2015s cm.⁻¹ (cyclohexane). The ¹⁹F n.m.r. spectrum of (Ib)† had two bands of equal intensity at 58.8 p.p.m. (J_{FF} 13; J_{HF} 5.0) and 63.2 p.p.m. $(J_{FF} \ 13; \ J_{HF} \ 0.0)$, whereas the ¹H n.m.r. spectrum had eight bands of equal intensity at $\tau_{a} 3.60 \ (J_{ae} 8; J_{ab} 11), \ \tau_{b} 4.45 \ (J_{ba} 11; J_{bg} 4),$ $\tau_{c} 5.02 (J_{ce} 10; J_{cd} 8), \tau_{d} 5.26 (J_{de} 8; J_{df} 6), \tau_{e} 5.60$ $(J_{ea} 8; J_{ec} 10), \tau_{f} 5.95 (J_{fd} 6; J_{fh} 11), \tau_{g} 6.68 (J_{gb} 4; J_{gh} 8), \tau_{h} 8.27 (J_{hf} 11; J_{hg} 8).$ Protondecoupling experiments clearly demonstrated the presence of the cyclic arrangement


_CHa·CHb·CHg·CHb·CHt·CHd·CHc·CHe

These observations may be rationalised on the basis of the structure (Ib), and are clearly not consistent with these adducts being formed by 1,4-addition reactions e.g., structure (IV).

Tricarbonylcyclo-octatetraeneiron reacts at room temperature with $(CF_3)_2C:C(CN)_2$ to afford (Ia); the corresponding reaction with (CF₃)₂CO however leads instead to the formation of trans-C₈H₈Fe₂-(CO)₆ and an organic compound m.p. 76-77°, which is assigned structure (III) on the basis of infrared (band at 1754 s cm.⁻¹), ¹⁹F n.m.r. (bands at 71.5 p.p.m., J_{FF} 10.5; J_{HF} 2 and 77.9 p.p.m., $J_{\rm FF}$ 10.5; $J_{\rm HF}$ 0.8), and ¹H n.m.r. (bands at τ 3.81, 4.19, 4.9, 6.25, 6.48, and 6.76, relative intensity 2:2:1:1:1:1) spectroscopy.

These reactions are of especial interest because diene systems normally only undergo 1,4-addition reactions with (CF₃)₂C:C(CN)₂⁴ and (CF₃)₂CO.⁵ It is suggested that electronic participation by the metal renders possible an otherwise thermally forbidden⁶ concerted 1,2-cycloaddition reaction. Specifically, it is suggested that (CF₃)₂CO and $(CF_3)_2C: C(CN)_2$ react by co-ordination⁷ on to the metal leaving the cyclo-octatetraene bonded to the metal as a monodentate ligand; the reaction then proceeds by an allowed⁸ 1,2-addition reaction within the co-ordination sphere.

The detailed mechanism of these and related reactions are being investigated.

(Received, August 24th, 1967; Com. 910.)

† Relative to CCl₃F (0.0 p.p.m.); coupling constants in c./sec. Complexes (Ia) and (II) have very similar spectra, and details for (Ib) only are given for brevity.

¹ M. D. Rausch and G. N. Schrauzer, Chem. and Ind., 1959, 957; A. Davison, W. McFarlane, L. Pratt, and G. Wilkinson, J. Chem. Soc., 1962, 4821. ² U. Kruerke, Angew. Chem. Internat. Edn., 1967, 6, 79.

³ M. I. Bruce, M. Cooke, M. Green, and F. G. A. Stone, Chem. Comm., 1967, 523.

- ⁴ W. J. Middleton, J. Org. Chem., 1965, 30, 1402.
 ⁵ W. J. Linn, J. Org. Chem., 1964, 29, 3111; D. C. England, J. Amer. Chem. Soc., 1961, 83, 2205.
- ⁶ R. B. Woodward and R. Hoffmann, J. Amer. Chem. Soc., 1965, 87, 2046.
- ⁷ M. Green, R. B. L. Osborn, A. J. Rest, and F. G. A. Stone, *Chem. Comm.*, 1966, 502; B. Clarke, M. Green, R. B. L. Osborn, and F. G. A. Stone, *J. Chem. Soc.* (A), in the press.
 ⁸ F. D. Mango and J. H. Schachtschneider, *J. Amer. Chem. Soc.*, 1967, 89, 2485.